

Design of an Economically Efficient Feed-in Tariff

Presentation to the California Energy Commission

Jonathan Lesser, Ph.D.

Xuejuan Su, Ph.D.

Spencer Yang, Ph.D.

May 21, 2007

Outline of Presentation

- Purpose of Feed-in Tariffs (FIT)
- Review of European FIT designs
- Economic limitations of current FIT designs
- Designing an economically efficient FIT
- Proposed auction-based capacity model
- Summary

•••BATES•WHITE•••

•••BATES•WHITE•••

Purpose of FITs

FITs are designed to encourage adoption of advanced renewable energy technologies

- Accelerate development of mid- to long-term renewable energy technologies
 - Encourage greater technological innovation
 - Accelerate cost reduction of technologies that are not currently economic at existing market prices
 - Provide financial stability and support for renewables developers
- Promote energy policy goals
 - Reduced fossil-fuel dependence
 - Decreased exposure to market volatility
 - Reductions in environmental degradation
 - Criteria pollutants regulated under the Clean Air Act
 - Reductions in greenhouse gases

•••BATES•WHITE•••

•••BATES•WHITE•••

Review of European FIT designs

FITs common in European countries

- 17 EU countries use FITs
 - Austria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Latvia, Luxemburg, Netherlands, Portugal, Slovenia, and Spain
 - Other EU countries use quota-based policies, e.g, Belgium, Italy
 - UK use renewables obligation, similar to RPS
 - Tentative evidence suggests that FIT is more effective for achieving renewables targets than quota-based systems
- Germany, Denmark, and Spain considered model countries of FIT with significant results, both in installed capacity, and in renewables generation
 - Whether benefits greater than the costs is a far more difficult question
 - Significant solar capacity in Germany has led to high electric rates, which damage economic competitiveness

•••BATES•WHITE•••

Case study 1: German FIT experience

- Electricity Feed-in Law (1991)
 - Utilities required to buy renewable energy at 90% of retail rate for electricity
 - Created a market for renewable energy
 - Designed to provide long-term financial stability to cover renewables costs
 - No time limit on utility purchases
 - Not tied to wholesale market cost of generation
 - As electricity prices fell after market liberalization in 1998, loss of financial viability of renewables developers
 - Led to changes in 2000
- Renewable Energy Law (2000)
 - Specific prices for different renewable technologies
 - Wind: fixed for first 5 years at 0.178 DM (US \$0.11) per kWh and then decreases
 - PV: started with €0.52 for <100kW installations (US 2006\$0.70) per kWh (€0.48/kWh for larger installations) and decreases by 5% annually
 - Payments extend for 20 years

Case study 1: German FIT experience (cont.)

- Solar payments changed in 2004
 - PV installations on buildings up to €0.57/kWh
 - PV installations on ground up to €0.48/kWh

Germany – cumulative installed PV capacity: 1990-2005

Total Installed Solar PV Capacity - Germany 1990 - 2005

Sources: 1990-1993: http://www.solarbuzz.com/FastFactsGermany.htm 1994-2005: BP Global, Statistical Review of World Energy 2006.

Case study 2: Denmark FIT experience

- Started in late 1970s as a response to high oil prices
- Investment subsidy on renewable energy technologies (1979-1989)
 - Direct subsidy for a fixed percentage of capital costs
 - Declined from 30% to 10% of investment over that period
 - Varied inversely with energy tax on fossil fuel
- Production subsidy and other direct support mechanisms (1981-1992)
 - Utilities obligated to buy renewable energy at a fixed price between 70-85% of the retail price of electricity
- Domestic market support (1990-2000)
 - Government guaranteed long-term financing of large wind projects that used Danishmade turbines
- Electricity market liberalization/deregulation (2000 current)
 - Gradual elimination of guaranteed prices and introduction of tradable green certificates (TGCs)
 - Danish wind energy market appears to be reaching saturation point
 - Wind provided over 16% of total energy generation in 2005
 - Only 12 MW on new capacity installed in 2006

• • BATES • WHITE • • •

Denmark FIT Experience Chronology 1979-2002

<u>Source</u>: Reprinted from DOE/EIA (2005), "Policies to Promote Non-hydro Renewable Energy in the United States and Selected European Countries," available at: http://www.eia.doe.gov/fuelrenewable.html

Denmark – cumulative installed wind capacity over time

Source: Danish Wind Energy Association.

http://www.talentfactory.dk/media(856,1033)/capacity_dk.xls

•••BATES•WHITE•••

Economic limitations of existing FIT designs

FITs are subsidies – which can be economically inefficient

- Public Utilities Regulatory Policy Act of 1978 (PURPA) was the first example of a FIT subsidy
 - Based on forecasts of "avoided costs" not market-based
 - Regulators had to guess future market conditions over the next few decades
 - Forecasts typically wrong sometimes by large margins
- PURPA encouraged development of inefficient technologies and socalled "PURPA machines"
 - Example: California SO4 contracts

FITs are subsidies – which can be economically inefficient (cont.)

- Subsidies insulate market participants from rigors of the marketplace
 - Less efficient competitors continue operating higher costs for consumers
 - Less investment by more efficient competitors returns can decrease
 - Can slow down development of more advanced technologies
 - "Crowding out" by current renewable energy technologies
- Subsidies can often have perverse economic consequences
 - High prices can encourage rapid growth of near-term technologies and technologies that are too speculative
 - Technological setbacks can reduce future investment
 - Lower expected returns, greater risk, and higher cost financing

• • • BATES • WHITE • • •

Existing FITs still require regulators to forecast the future

- Regulators must establish price curves for each technology
- Regulators must forecast growth in technological improvement
 - Similar to "RPI X" rate regulation, where "RPI" is an inflation factor and "X" is a productivity factor
 - Accurately predicting future productivity growth is probably impossible
 - In the same way, predicting rate of technological improvement is extremely difficult
 - "Endogeneity problem"

 prices set by regulators can affect technological improvement rates
 - Too high a price, can actually <u>reduce</u> rate of technological improvement
 - Rates for individual technologies can affect other technologies

•••BATES•WHITE•••

Designing an efficient FIT

FIT Design - leverage economic incentives and market information to promote efficient, least-cost policies

- Rely on market-based information
 - RET developers have better information than policy makers
 - Current available technologies
 - Expected technological progress
 - Trends in cost of generation
 - Elicit information from developers through the market itself
 - Minimize the use of long-term forecast values by policy makers
 - Minimize the use of cost of generation estimates to avoid over- or undercompensation
 - Minimize the use of estimates of rates of technological progress
 - Market-based approach reduces administrative burden and provides greater accuracy of information
 - "Win-win" for policymakers

• • BATES • WHITE • • •

FIT Design – market design benefits and policy issues

- Efficient design allows policy makers to focus on objectives
 - Types of renewable technologies to receive FIT subsidy
 - Balance more mature renewable technologies versus incipient, but promising, RETs in the long term
 - Time horizons for FIT subsidies
 - Can be either a calendar time or some "trigger condition," e,g., when renewab; e energy/capacity share reaches a certain percentage in total supply
 - Balance financial stability (known payments stream) and economic efficiency (economic operation)
- Policy makers must still be aware of caveats about subsidies and unrealistic renewable energy goals
 - Transmission interconnection issues (wind)
 - Retail electric rates and damage to economy
 - Reductions in technological progress

•••BATES•WHITE•••

FIT design – account for specific renewable energy technology characteristics

- Ensure <u>installation efficiency</u> and <u>operating efficiency</u>
 - Installation efficiency: installed capacity should embody the current technology frontier for a given renewable technology
 - Do not subsidize outdated technology or technology that is market-competitive
 - Operating efficiency: installed capacity should produce least-cost energy
- Two-part FIT provides a solution
 - 1. FIT capacity payment: determined through capacity market auction
 - Similar to forward capacity market, promotes installation efficiency and provides financial stability
 - 2. FIT energy payment: tied to actual power generation, dependent on spot market energy price
 - Competitive market energy price promotes operating efficiency

Why two-part FIT works

- Competition weeds out less efficient technologies as well as less efficient plants — let the market mechanism work!
 - Capacity payment auction
 - Auctions have been widely and successfully used in the public domain, e.g. electromagnetic spectrum, offshore drilling rights, timber/logging rights, highway construction, treasury bills/notes/bonds, etc.
 - Auction selects more cost efficient RET producers without burdening policy makers to divine actual costs for each RET
 - California used an auction process in 1998-2002 for supplemental energy payments to renewables developers
 - Auction did not guarantee funds available in future a critical difference to our proposal
 - Energy payment competitive spot market
 - Encourages more energy production, but avoids paying distorted prices
 - The more energy produced when the market is tight (super-peak and peak periods), the higher is the payment – availability at peak time when needed
 - Competitive market rewards efficient RET producers, without requiring policy makers to monitor each producer's actions

•••BATES•WHITE•••

•••BATES•WHITE•••

Proposed auction-based capacity model

FIT capacity auction design

- Similar to forward capacity market design in use by PJM, ISO-NE, and proposed for California ISO
 - Based on existing RET capacity, policy makers determine how much incremental capacity is needed to reach goals set for future years
 - Technology-specific goals established by policy makers
 - Example: 2008 Auction designed to solicit capacity on-line in 2010
- Interested parties participate in auction
 - Parties bid using selected auction format
 - Numerous alternative auction designs
 - All successful bidders are paid the market clearing price for capacity
 - Clearing price determined where bid capacity exactly meets policy goals for individual RETs
- Successful bidders penalized if they do not bring capacity on-line as agreed

• • • BATES • WHITE • • •

An example: 2008 solar auction, 2010 online date

FIT capacity payment over time

Incentive mechanism

- Want capacity to produce as much energy as possible
 - Rather than FIT administrative energy price, RET providers sell energy into spot market, bilateral agreements, etc.
 - Choices are left to RET developers
 - Modify annual capacity payment in year T
 - Based on relative capacity factor (CF) of each technology of vintage (V) for each developer (N), relative to average capacity factor for technology of vintage

$$P_{V,N,T} = P_{V,T} x \left[\frac{CF_{V,N,T}}{CF_{V,T}} \right]$$

- Similar to forward capacity market designs to encourage availability of installed capacity during high-demand hours
- Energy price provides additional incentive to be generating power when most valuable

• • • BATES • WHITE • • •

RET installed capacity over time

Additional Design Details

- Payments set to expire after selected years
- Example: 10-year payment streams
 - First auction in 2008, on-line date 2010
 - Payments for 2010 vintage through 2019
 - Payments for 2011 vintage through 2020
 - Etc.
- Date of final annual auction will depend on future market conditions
- Provides policy makers with flexibility
 - Can adjust incremental capacity MW goals annually, if necessary
 - Balance rate pressure if above-market prices
 - No need if RETs are at or below market prices (ex: fossil fuel prices rise significantly)

•••BATES•WHITE•••

Summary and conclusions

Recommended design is superior to existing approaches

- Two-part design is economically efficient
 - Annual target of incremental RET capacity
 - Economically efficient approach to acquiring RETs
 - Promotes installation efficiency and operating efficiency
- Elicits market information without excessive administrative burden
 - Capacity payment determined through auction process
 - Energy payment tied to spot market price for electricity
 - RET technological progress rate taken into account over time
- Easy to implement and monitor
 - Provides policy makers with additional flexibility
 - Can adjust capacity goals over time, as needed

•••BATES•WHITE•••

Design of an Economically Efficient Feed-in Tariff

Presentation to the California Energy Commission

Jonathan Lesser, Ph.D.

Xuejuan Su, Ph.D.

Spencer Yang, Ph.D.

May 21, 2007